The role of nasal carriage in Staphylococcus aureus infections

Heiman FL Wertheim, Damian C Melles, Margreet C Vos, Willem van Leeuwen, Alex van Belkum, Henri A Verbrugh, Jan L Nouwen

Staphylococcus aureus is a frequent cause of infections in both the community and hospital. Worldwide, the increasing resistance of this pathogen to various antibiotics complicates treatment of *S aureus* infections. Effective measures to prevent *S aureus* infections are therefore urgently needed. It has been shown that nasal carriers of *S aureus* have an increased risk of acquiring an infection with this pathogen. The nose is the main ecological niche where *S aureus* resides in human beings, but the determinants of the carrier state are incompletely understood. Eradication of *S aureus* from nasal carriers prevents infection in specific patient categories—eg, haemodialysis and general surgery patients. However, recent randomised clinical trials in orthopaedic and non-surgical patients failed to show the efficacy of eliminating *S aureus* from the nose to prevent subsequent infection. Thus we must elucidate the mechanisms behind *S aureus* nasal carriage and infection to be able to develop new preventive strategies. We present an overview of the current knowledge of the determinants (both human and bacterial) and risks of *S aureus* nasal carriage. Studies on the population dynamics of *S aureus* are also summarised.

Introduction

Staphylococcus aureus is both a human commensal and a frequent cause of clinically important infections (figure 1).¹ Although the prevalence of meticillin-resistant *S aureus* (MRSA) is still very low in northern European countries,² there is a worldwide increase in the number of infections caused by MRSA. Vancomycin is one of the last therapeutic options available for MRSA infections. The recent isolation of vancomycin-resistant MRSA strains in the USA is a major cause for concern.³ Therefore, the prevention of staphylococcal infections and reduction of the spread and emergence of MRSA are essential.

The association between *S aureus* nasal carriage and staphylococcal disease was first reported by Danbolt in 1931, who studied furunculosis.⁴ The increasing incidence of penicillin-resistant *S aureus* hospital infections since 1947 emphasised the need for a better understanding of the pathogenesis of staphylococcal disease. Subsequently, numerous studies confirmed Danbolt's finding.⁵⁻⁹ A causal relation between *S aureus* nasal carriage and infection is supported by the fact that the nasal *S aureus* strain and the infecting strain share the same phage type or genotype.^{8,10} Furthermore, nasal application of an antistaphylococcal drug temporarily decolonises the nose and other body sites, which prevents infection.¹¹

Our knowledge of the mechanisms, risks, and treatment of *S aureus* nasal carriage has greatly expanded over the past decade. Table 1 presents an overview of major events in *S aureus* research. Here, we focus on the latest insights into the determinants of *S aureus* nasal carriage and the risks of infection associated with *S aureus* nasal carriage. Most studies were done in western countries, so conclusions drawn can not always be generalised.

Determinants of nasal carriage of S aureus S aureus nasal carriage patterns

S aureus colonises the skin and mucosae of human beings and several animal species.⁵ Although multiple body sites can be colonised in human beings, the anterior nares of the nose is the most frequent carriage site for *S aureus*.⁵ Extra-nasal sites that typically harbour the organism include the skin, perineum, and pharynx.^{5,23–25} Other carriage sites including the gastrointestinal tract,^{5,26} vagina,²⁷ and axillae^{5,25,28} harbour *S aureus* less frequently (figure 2).

Most studies on *S aureus* nasal carriage have used a cross-sectional design with a single nasal culture to

Figure 1: Large diversity in S aureus infections

Lancet Infect Dis 2005; 5: 751–62

All authors are from the Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands.

Correspondence to: Dr Heiman F L Wertheim, Erasmus MC, Department of Medical Microbiology and Infectious Diseases, PO Box 2040, 3000 CA Rotterdam, Netherlands. Tel +31 10 4633510;

fax +31 10 4633875; h.wertheim@erasmusmc.nl

Year	Event		
1880	Alexander Ogston identifies micrococci in purulent infections ¹²		
1931	Association between nasal colonisation and furunculosis discovered ⁴		
1934	Popularisation of the coagulase test for the identification of S aureus ⁵		
1944	Introduction of phage typing ¹³		
1947	Penicillin-resistant S aureus reported14		
1952	Association between nasal colonisation of S aureus and infection with the same strain		
	determined by phage typing ^{10,15}		
1961	Meticillin-resistant S aureus (MRSA) reported ¹⁶		
1991	Pulsed field gel electrophoresis used for genotyping S aureus ¹⁷		
1994	Identification of microbial surface components recognising adhesive matrix molecules (MSCRAMMs) ¹⁸		
2000	Multilocus sequence typing developed for studying clonality of S aureus ¹⁹		
2001	Whole genome of S aureus sequenced ²⁰		
2001	80% of bacteraemic S aureus isolates are endogenous ⁸		
2001	Increase in community-onset MRSA infections ²¹		
2002	Vancomycin-resistant S aureus reported ²²		
Table 1: Majo	or events in S aureus research		

classify an individual as a carrier or not. However, longitudinal studies distinguish at least three *S aureus* nasal carriage patterns in healthy individuals: persistent carriage, intermittent carriage, and non-carriage.^{5,6,23,29,30} Some studies make a further distinction between occasional and intermittent carriers.^{29,31} Therefore, a patient classified as a carrier in cross-sectional studies could either be a persistent or an intermittent carrier. This distinction is important because persistent carriers have higher *S aureus* loads and a higher risk of acquiring

Figure 2: S aureus carriage rates per body site in adults

There is an increase in carriage rates at extra-nasal sites within nasal S *aureus* carriers. The mentioned rates are approximations using data from the literature cited in the text.

S aureus infection.^{32,33} Likewise, non-carriers in a crosssectional study may actually be intermittent carriers.

The definition of persistent carriage varies from study to study. There is no general consensus on how many cultures should be taken and how many cultures should be positive to define persistence. One study concludes that a "culture rule" that combines qualitative and quantitative results of two nasal swabs taken with a week interval can accurately classify *S aureus* nasal carriage.³⁴ Since adequate, internationally accepted definitions are needed, the so-called culture rule is an improvement for those studying determinants and risks of *S aureus* nasal carriage.

Longitudinal studies show that about 20% (range 12–30%) of individuals are persistent *S aureus* nasal carriers, approximately 30% are intermittent carriers (range 16–70%), and about 50% (range 16–69%) non-carriers.^{6,29,34,35} The very wide ranges found in the proportions of intermittent and non-carriers are the result of the use of different culture techniques, different populations being studied, and the use of different interpretation guidelines.³⁰ Although at least seven nasal swab cultures are necessary to segregate non-carriers from intermittent carriers, the more nasal cultures are analysed, the higher the chance of identifying an intermittent carrier.³⁴

Children have higher persistent carriage rates than adults.^{23,36,37} Rates vary substantially with age, falling from approximately 45% during the first 8 weeks to 21% by 6 months.³⁸ More than 70% of newborn babies have at least one positive nasal culture with S aureus.38 There is a transition from persistent carriage to intermittent or noncarriage states during adolescence (figure 3).5.23 Crosssectional surveys of healthy adult populations have reported S aureus nasal carriage rates of approximately 27% since 2000.7.9.39-46 This rate is much lower than the earlier reported prevalence of 35%, which included studies since 1934.6 Plotting the carriage rates of either healthy populations or a general hospital population clearly illustrates a substantial decline in the S aureus nasal carriage rate in time (figure 4, patient categories with known higher S aureus nasal carriage rates, like dialysis patients, were excluded). Explanations for this decline include improved personal hygiene, changes in socioeconomic class,47 and smaller families.48

Determinants of Saureus nasal carriage

Although the reasons remain unknown, the basic determinants of persistent and intermittent carriage are thought to be different. Persistent carriers are often colonised by a single strain of *S aureus* over long time periods, whereas intermittent carriers may carry different strains over time.^{29,30,35} Furthermore, the load of *S aureus* is higher in persistent carriers, resulting in increased dispersal and a higher risk of infection.^{33,34} Nasal carriers who are also perineal carriers have higher *S aureus* loads and disperse more *S aureus*.^{4,25,49}

The mechanisms leading to *S aureus* nasal carriage are multifactorial. A recent study in which volunteers (noncarriers and persistent carriers) were artificially inoculated with a mixture of *S aureus* strains showed that noncarriers quickly eliminated the inoculated *S aureus* strains, whereas most persistent carriers selected their original resident *S aureus* strain from the inoculation mixture.⁵⁰ The investigators concluded that host characteristics substantially co-determine the *S aureus* carrier state and that an optimal fit between host and bacteria seems to be essential.⁵⁰

This view is further supported by the fact that *S* aureus carriage rates vary between different ethnic groups, with higher rates in white people^{5,40} and in men,^{5,29,51} and depend on age.23,38,52 Patients with diabetes mellitus (both insulin dependent and non-insulin dependent),53 patients undergoing haemodialysis^{54,55} or continuous peritoneal dialysis for end stage renal disease,56 patients with end stage liver disease, 57,58 patients with HIV, 59,60 patients with S aureus skin infections and skin disease (eg, eczema or psoriasis),61-63 and obesity and a history of cerebrovascular accident⁵¹ have been shown to have higher S aureus nasal carriage rates. Most studies are hospital or outpatientclinic based and need confirmation from communitybased surveys. In one community-based study, Boyko and co-workers⁶⁴ found similar S aureus carriage rates in diabetics and non-diabetics, by contrast with an earlier clinic-based study.53

Nasal colonisation of *S aureus* can be seen as the net result of repellent and attracting forces. There are four prerequisites to becoming a nasal carrier of *S aureus*. First, the nose has to come in contact with *S aureus*. Second, *S aureus* needs to adhere to certain receptors in the nasal niche. Third, *S aureus* needs to overcome the host defences. Finally, *S aureus* should be able to propagate in the nose. We will discuss these issues separately (table 2).

How does S aureus reach the nose?

S aureus cells can survive for months on any type of surface.65 Hands are the main vector for transmitting S aureus from surfaces to the nasal niche-eg, nose picking.66 S aureus cells are principally found in the anterior nares (vestibulum nasi or "nose picking area"), and S aureus nasal carriage and hand carriage are strongly correlated.⁴ Some studies find higher carriage rates more proximal in the nose, but these studies are rare and probably reflect a chance finding.⁶⁷ S aureus may also reach the nose directly through the air, but this probably occurs less frequently.68 However, airborne transmission is important for the dispersal of staphylococci to many different reservoirs, from where, via the hands, they can reach the nose. S aureus nasal carriers with rhinitis can disperse high loads of S aureus into the environment and may be the source of an outbreak of S aureus infectionsthe so called "cloud" individual.6

Environmental factors can also influence the *S aureus* nasal carriage state. Hospitalisation, for example, has been

Figure 3: Rates of S aureus nasal carriage according to age

shown to be an important risk factor.70 Furthermore, it seems that S aureus carriers can "impose" their carrier state upon other household members. Recently, Peacock and colleagues³⁸ found concordant carrier states between mothers and their children. Also, Bogaert and co-workers48 found large households (≥five members) to be positively associated with S aureus nasal carriage. Most mothers carry the same strain as their children, indicating that carriage strains are transmitted to close contacts.38 A study among an elderly population demonstrated that not only persistent but also non-carriage or intermittent S aureus nasal carrier states are shared among household members.⁷¹ Up to 65% of people with positive cultures living within one household shared genotypically identical strains.71 Intrafamilial spread of MRSA from and to health-care workers has also been shown to be an

Figure 4: Reported S aureus nasal carriage rates through the years There is a significant negative correlation between the year of reporting and the reported carriage rate (correlation coefficient -0.55; p<0.001).

Mechanism	Host	S aureus
General	Age, sex, ethnicity	Virulence
	Socioeconomic class	
	Antibiotic use	Antibiotic resistance
	Underlying disease (insulin-dependent	
	diabetes mellitus, HIV, liver disease,	
	eczema, nasal abnormalities, and others)	
	HLA type	
	Immune status	
Exposure	(Heavily) colonised partner	
	Hospital environment	
	Nose picking	
Adherence	Receptors	Adhesins
	(Extracellular) matrix proteins	MSCRAMMs
	Cytokeratin type 10	Clumping factor B
	Epithelial membrane	(Lipo)teichoic acid
		Capsule
	Mucins	Capsular polysaccharides
	Surface charge	Surface charge
	Hydrophobicity	Hydrophobicity
Evading) immune response	Mucosal/skin barrier	Proteases, lipases
	Clearance in mucus by microvilli	Host cell internalisation
	Immunoglobulins	Protein A (binds Fc of IgG)
	Lysozyme, lactoferrin, antimicrobial peptides	Resistance to antimicrobia
		peptides
	Opsonisation	Capsule
SCRAMMs=microbial surface con	nponents recognising adhesive matrix molecules	

important risk factor for the re-introduction of MRSA into hospitals.⁷² Furthermore, Herwaldt and colleagues⁷³ demonstrated that in 21% of patients receiving continuous peritoneal dialysis, the source of newly acquired nasal *S aureus* strains were their respective family members.

Activities leading to skin lesions are also correlated with higher *S aureus* nasal carriage rates. These include river rafting,⁷⁴ football,⁷⁵ and (pig-)farming.⁷⁶ Repeated skin punctures in drug users and diabetics were thought to explain higher *S aureus* nasal carriage rates.⁶ However, recent studies do not support this theory: intravenous drug users have a lower prevalence of *S aureus* nasal carriage compared with drug users on an oral methadone programme,⁷⁷ and *S aureus* nasal carriage rates are not different between diabetic patients injecting insulin and those using oral glucose-lowering medication.^{53,64}

There is no relation between carriage rate and seasonality, temperature, or relative humidity.^{5,78,79} A populationbased cohort of children and adolescents showed that active cigarette smoking is associated with a lower *S aureus* nasal carriage rate, whereas passive smoking is associated with a higher *S aureus* nasal carriage rate.⁴⁸ The aetiological basis of this observation is unknown.

How does *S aureus* withstand and evade the host immune response?

Nasal secretions have a prominent role in the innate host defence. Components of nasal secretions that contribute to the innate immune response include immunoglobulin A and G, lysozyme, lactoferrin, and antimicrobial peptides.⁸⁰ S aureus nasal carriers may have a dysregulation of these innate humoral factors in their nasal secretions.⁸¹ Such people have raised concentrations of the alpha-defensins (eg, human neutrophil peptide [HNP] 1, 2, and 3) and human beta-defensin 2 (HBD2), indicative of the presence of both neutrophil-mediated and epithelial-mediated inflammation.⁸¹ Lipoteichoic acid, present in the S aureus cell wall, is a strong stimulus for neutrophil recruitment.82 Therefore, this inflammatory response could be induced by S aureus colonisation. However, studies have shown that HNP1, 2, and 3, and HBD2 are not microbicidal against S aureus in vitro, suggesting that the host response is ineffective and insufficient to prevent S aureus nasal carriage.40 The role of the cellular response is unclear. The previously established relation between glycaemic control and S aureus carriage rate in diabetics⁵³ could be seen as the result of hyperglycaemia-related reduced phagocytic activation.83

Several studies have found that certain antimicrobial peptides have no or little activity against *S aureus* or that other peptides are needed to enhance their activity.^{84,85} The inability of nasal antimicrobial peptides to clear *S aureus* from the nose may be explained by (1) the anatomy of the nose in relation to *S aureus* nasal carriage and (2) resistance of *S aureus* to many antimicrobial peptides.^{40,86} *S aureus* predominantly colonises an area in the vestibulum nasi that is devoid of cilia and relatively free from nasal mucous secretions that contain antimicrobial peptides and immunoglobulins.⁴⁰ It is nevertheless possible that the innate immune response prevents *S aureus* from invading the mucosa and causing more extensive forms of colonisation or even infection.

In-vitro studies have shown that S aureus is able to resist certain cationic antimicrobial peptides by reducing the net negative charge of its cell wall and cell membrane, or perhaps by using efflux pumps or by releasing proteases.⁸⁶ aureus has several mechanisms-including S staphylokinase⁸⁷ and membrane lipid modification⁸⁸through which it can withstand an attack by cationic antimicrobial peptides, including defensins and cathelicidins, which are present in nasal secretions.86,89 Whether the resistance of S aureus to defensins and other cationic antimicrobial peptides is a determinant of aureus nasal carriage is currently not known. Cathelicidin can synergistically work with defensins to exert a bactericidal effect on S aureus.84 Furthermore, all *S aureus* strains are lysozyme resistant since they possess the peptidoglycan-specific O-acetyltransferase.⁹⁰

The presence of *S aureus* in the nose elicits a subclinical immune response, as shown in a study where seroconversion occurred after carriage was established.⁹¹ *S aureus* produces protein A that binds the Fc region of immunoglobulins, thereby inactivating them.⁶⁵ It is clear that *S aureus* has a wide arsenal of strategies to evade the host immune response. Further studies are needed to

identify all the components of the immune response towards *S aureus* in the nose.

How does S *aureus* adhere to, and propagate in, the anterior nares?

The vestibulum nasi is limited laterally by the interior of the wing of a nostril and medially by a mucous fold (limen nasi), behind which the nasal cavity with mucosal lining begins (figure 5).⁹² The epithelial inner wall of a nostril is fully keratinised and includes apocrine sweat glands, sebaceous glands, and hair follicles of the vibrissae.⁹² Most studies on determinants of *S aureus* nasal carriage focus on mucosal and mucin binding.⁹³⁻⁹⁵ Considering the anatomy of the vestibulum nasi, this focus should be changed.

Bibel and colleagues³⁶ demonstrated the importance of keratinised epithelial cells in binding *S aureus*. In addition to the nose, *S aureus* can also multiply independently in the area of the perineum.³⁷ Both the vestibulum nasi and the perineum contain large apocrine sweat glands, which is an important clue in studying determinants of *S aureus* nasal carriage, but has not been studied thoroughly.³⁵ Since *S aureus* binding to mucosa or mucin probably has a transient nature, we propose that: (1) intermittent carriers are actually "mucosal carriers" and (2) persistent carriers use a special niche, such as an apocrine gland, where *S aureus* cells can multiply to high numbers.

S aureus adherence may also be non-specifically mediated via physicochemical forces, including hydrophobic interactions.⁶ Alternatively, adherence may be more specifically accomplished through binding of certain bacterial cell surface moieties (adhesins) to defined structural receptors in the membranes of the host cells.⁶ *S aureus* has a greater affinity for nasal epithelial cells sampled from carriers than from non-carriers,⁹⁴ and the bacterium adheres better to nasal epithelial cells from patients with eczema than to cells from patients without eczema.⁶

Recent experiments have shown that clumping factor B (ClfB) and the S aureus surface protein G (SasG) bind to nasal epithelial cells.98,99 ClfB specifically binds human cytokeratin type 10 and SasG to an unknown ligand of desquamated nasal epithelial cells.98 Also, cell wall teichoic acid is essential for S aureus nasal carriage.95,100 Microbial surface components recognising adhesive matrix molecules (MSCRAMMs) can bind to fibronectin, fibrinogen, and collagen related polysaccharides.¹⁸ MSCRAMMs probably have a role in the binding of staphylococci to sites where the mucosal lining is breached, exposing these matrix molecules.66 Differences in the expression of genes coding for these factors, depending on the ecological niche, and other putative adhesins and receptors may provide clues to the true determinants of S aureus nasal carriage or non-carriage.

Bacterial interference has been postulated to be a major determinant of the *S aureus* carrier state, or rather, non-carrier state. When an ecological niche is already occupied

Figure 5: Anatomy of the nostril Adapted from reference 92.

by certain bacteria, other bacteria do not seem to have the means to replace this resident bacterial population.¹⁰¹ The resident flora must be reduced or eliminated before other bacteria can successfully "interfere" with the resident bacterial population.¹⁰² Cross-inhibition of the expression of various virulence factors by the accessory gene regulator (*agr*) and staphylococcal accessory regulator (*sar*) may be one mechanism by which one strain excludes others from colonising sites including the anterior nares,¹⁰³ although a large *S aureus* population.¹⁰⁴ Still, bacterial interference can be seen as a determinant of *S aureus* nasal carriage, although it does not appear to be the ultimate determinant.³⁸

Bacterial interference by active colonisation using a nonpathogenic *S* aureus strain (502A) was successful in nurseries during outbreaks of *S* aureus infections in the 1960s and for treatment of patients with recurrent furunculosis.^{102,105} The early practice of artificial inoculation with *S* aureus 502A was abandoned after alleged complications¹⁰⁶ and the advent of newer antistaphylococcal antibiotics in the early 1970s.

Bacterial population dynamics

To understand S aureus nasal carriage and the relation with subsequent disease, we need to define the population structure of S aureus. Several techniques have been used to describe the natural population structure of *S* aureus, including multilocus enzyme electrophoresis,107 pulsedfield gel electrophoresis,¹⁰⁸ multilocus sequence typing (MLST),^{19,109} and amplified fragment length polymorphism (AFLP).¹¹⁰ These studies have revealed that S aureus is highly clonal, by contrast with other pathogenic species such as Streptococcus pneumoniae.111 Most recent studies have assessed the population structure of S aureus using MLST.^{19,109} This molecular typing method characterises bacterial isolates on the basis of the sequence of internal fragments of seven housekeeping genes that represent the stable "core" of the bacterial genome. These MLST studies have placed most S aureus isolates (colonising as well as invasive isolates of meticillin-sensitive S aureus [MSSA]

and MRSA) in five major clusters—clonal complex (CC) 8, CC30, CC5, CC22, and CC45.^{109,112,113} MRSA isolates were found in several major clonal complexes, indicating that meticillin resistance has developed in most distinct phylogenetic sub-populations of *S aureus*.^{110,114,115} The pandemic penicillin-resistant *S aureus* clone in the 1950s, now known as CC30, is currently re-emerging as a pandemic MRSA clone.^{116,117}

Most population structure studies of S aureus were biased by the use of mostly clinical isolates and collections of nosocomial MRSA.^{108,114} Recently, the population structure of S aureus isolated from the nose of people living in the community was analysed by AFLP.¹¹⁰ AFLP is a whole genome typing method, documenting the contribution of "accessory genetic elements" as well as genome-core polymorphisms. This study revealed the existence of three major (I, II, III) and two minor (IVa and IVb) genetic clusters of S aureus (figure 6). AFLP clusters II and III-identical to MLST CC30 and CC45, respectively-account for almost half (47%) of all carriage isolates, suggesting that these two clonal complexes have evolved to be very successful in colonising human beings.110 Melles and co-workers110 identified the same major clusters as the MLST studies (Oxford database, UK; http://www.mlst.net). Apparently, these clonal clusters have spread successfully worldwide.110

There is controversy as to whether all *S aureus* strains have equal disease invoking potential or whether invasive disease is associated with particularly virulent genotypes. Feil and co-workers¹⁰⁹ found no significant differences in the distribution of genotypes between strains isolated from carriers and those from patients with invasive

Figure 6: Principal component analysis of 1056 S aureus strains reveals genetic clusters of hypervirulent clones^{110,118}

The different boxes, plotted here in a three-dimensional space and coloured according to their source, represent each S *aureus* strain analysed in the study. The five circles indicate the three major (I, II, and III) and two minor (IVa and IVb) different phylogenetic clusters identified by AFLP. Although strains from each of the genetic clusters are essentially able to cause invasive disease, some clusters contain proportionally more invasive isolates. disease. There was, therefore, no evidence for the existence of hyper-virulent S aureus clones. By contrast, subclusters of strains with differential degrees of pathogenicity were observed in the study by Melles and colleagues,110 who identified subclusters with an overrepresentation of bacteraemia isolates. Furthermore, expansion of multidrug-resistant clones or clones associated with skin disease (impetigo) were observed. Some clones have been shown to be more virulent than others; however, given the appropriate clinical conditions each and every strain of S aureus can become a lifethreatening pathogen. Another study found that invasive S aureus strains belonging to a clonal complex are associated with a higher in-hospital mortality rate, indicating co-evolution of S aureus virulence and spread among human beings.119 This study also concluded that (major) CC45 was significantly under-represented among invasive strains (odds ratio [OR] 0.2, 0.04-0.6), which corroborated earlier findings.110,119 Furthermore, Peacock and colleagues¹²⁰ provided evidence of considerable horizontal transfer of virulence-associated genes in a clonal background. In summary, S aureus will remain an important clinical challenge and, apparently, some strains will present challenges that are more vigorous than others. It remains to be seen whether the possibility of identifying the more pathogenic clones of *S* aureus in the laboratory can be translated into a reliable diagnostic tool with clinical relevance in the future.

Risks of S aureus nasal carriage

Community-acquired infections

Most studies regarding the risks of acquiring *S* aureus infections in the community concern skin and soft tissue infections. Several, mostly older, studies investigated the relation between *S* aureus nasal carriage and skin infections,¹²¹ including furunculosis,^{122,123} impetigo,¹²⁴ sycosis barbae,^{10,122,125} and stye.¹²⁶ On average, 80% (range 42–100%) of those with skin lesions were *S* aureus nasal carriers, and 65% (range 29–88%) had the same phage type in the nose and lesion.

In one large prospective population-based study among elderly people there was no relation between persistent *S aureus* nasal carriage and all-cause mortality, a surrogate end-point for serious staphylococcal disease.⁷¹ Earlier retrospective cohort or case-control studies have demonstrated increasing age, male sex, alcoholism, lung disease, cancer, diabetes mellitus, end stage renal failure, and dialysis to be risk factors for community-acquired *S aureus* infections necessitating hospital admission.¹²⁷⁻¹²⁹ These factors have also been identified earlier as determinants of *S aureus* nasal carriage in case-control or cross-sectional studies.⁶

The spectrum of community *S aureus* disease is rapidly changing with the advent and spread of community-onset MRSA strains.^{75,116,130,131} Overall MRSA carriage rates in the community are still low,^{242,132} but seem to be rising rapidly in certain parts of the world.^{130,133} In the only prospective

study done so far on nasal carriage of community-onset MRSA and risk of infections in soldiers, Ellis and coworkers¹³⁴ found a relative risk of $3 \cdot 1$ (95% CI $1 \cdot 5 - 6 \cdot 5$) for nasal MRSA carriers to acquire a MRSA infection (eg, cellulitis, abscesses) in the community. In a retrospective study concerning community-onset MRSA skin infections among professional football players, Kazakova and colleagues75 did not find any MRSA in nasal swabs or environmental cultures, although 42% were nasal carriers of MSSA strains. Apart from these highly selected populations, it remains questionable whether the results from these studies can be extrapolated to the general population.134 We need more community-based studies to better understand the ecology, pathophysiology, and epidemiology of S aureus nasal carriage and infections in the community and to develop and target preventive measures.

Nosocomial infections

S aureus (MSSA as well as MRSA) ranks as the second most common cause of hospital-acquired (nosocomial) bloodstream infections. About 20% of patients undergoing surgery acquire at least one nosocomial infection, leading to increased morbidity, mortality, hospital stay, and costs.135-139 Hospital treatment usually requires that first line barriers for pathogens-of which the skin is an important one-are intentionally breached, resulting in an increased risk of infection. Most of these nosocomial S aureus infections are caused by the patient's own S aureus cells, which were already present on the skin or mucosal membranes before hospital admission in at least 80% of the cases.7.8 It could well be that more infections are of endogenous origin, since 10% of the nasal S aureus carriers have more than one genotype or phage type in their nose.5,140

S aureus nasal carriage has been identified as a risk factor for the development of nosocomial infections in general hospital populations,¹⁴¹ surgical patients (general,^{5,6,9} orthopaedic,¹⁴² thoracic surgery,¹⁴³ and children¹⁴⁴), patients on haemodialysis or continuous peritoneal dialysis,^{6,33,54,145,146} patients with liver cirrhosis and after liver transplantation,^{58,147-149} HIV-infected patients,^{59,60} and patients admitted to intensive care units.¹⁵⁰⁻¹⁵² In a recent study there was a threefold increased risk for non-surgical patients who were *S aureus* nasal carriers to acquire a nosocomial *S aureus* bacteraemia versus non-carriers.⁷ Also nasal carriers among surgical patients have a higher risk (OR $4 \cdot 0$) for nosocomial *S aureus* bacteraemia compared with controls.¹⁵³

Second to coagulase-negative staphylococci, *S aureus* is the most prevalent organism causing intravascular deviceassociated bacteraemia.^{6,137,154} Pujol and colleagues¹⁵⁰ looked at bacteraemia in an intensive care unit. Most of the *S aureus* bacteraemias had an intravascular device as a source. In this study, carriers of *S aureus* had a relative risk of 12.4 for the development of *S aureus* bacteraemia.¹⁵⁰ In a study by Wertheim and co-workers,⁷ the source of bacteraemia was device related in more than 50% of the cases. Interestingly, the mortality rate from *S aureus* bacteraemia is higher in non-carriers compared with carriers.⁷ Since bacteraemia is usually endogenous in carriers, partial immunity may have an important role here. This finding needs confirmation and the underlying mechanism resolved.

In HIV-positive patients, increased rates of S aureus bacteraemia and deep soft tissue infections have been observed, which frequently recur. Even higher infection rates are found in patients with AIDS compared with HIV-positive asymptomatic patients. Nguyen and colleagues⁵⁹ found that nasal carriage is an important risk factor in this patient population (OR 5.1). Other risk factors for infection in this study were presence of a vascular catheter (OR 4.9), low CD4 cell count (<100 cells/ μ L; OR 3.5), and neutropenia. The risk for developing an S aureus infection was approximately 10% for every 6 months in patients who were nasal carriers of S aureus and had CD4 cell counts of less than 100 cells/ μ L. It should be noted that S aureus nasal carriage was more common in patients who were not receiving cotrimoxazole prophylaxis for prevention of Pneumocystis *jiroveci* pneumonia.

In haemodialysis patients, S aureus is the most frequently found pathogen in infections at the vascular access site and in bacteraemia. The infection rate is higher in carriers on haemodialysis, with relative risks varying from 1.8 to 4.7.^{6,54,145,146,155} S aureus isolates are usually identical to the one previously isolated from the patient's nose.¹⁵⁶ In a study by Nielsen and colleagues,¹⁵⁵ the relative risk for S aureus bacteraemia was 26.2 (6.1-113) when S aureus was colonising the insertion site, and $3 \cdot 3$ ($0 \cdot 74 - 15 \cdot 1$), in the case of only S aureus nasal carriage. However, multiple studies have demonstrated that long-term eradication of S aureus nasal carriage by (repeated) application of mupirocin effectively prevents S aureus infections among patients who are receiving dialysis, thereby decreasing complications and costs.157-160 Additional application of a local antibiotic ointment to exit sites is also important in preventing infections.161

In patients on continuous peritoneal dialysis, S aureus is the leading cause of continuous peritoneal dialysis-related infections, often leading to catheter loss. S aureus nasal carriage has been found to be a major risk factor for infections in patients on continuous peritoneal dialysis, mainly associated with exit site and tunnel infections.^{33,56,162–166} Intervention studies consistently demonstrated a substantial reduction in the incidence of exit site infections, but not a consistent reduction in the incidence of continuous peritoneal dialysis-related peritonitis.54,166-170 Two studies did not find a correlation between S aureus nasal carriage and the development of S aureus exit site infections.^{171,172} In a recent study it was demonstrated that only continuous peritoneal dialysis patients who are persistent S aureus nasal carriers are at increased risk of acquiring continuous peritoneal dialysis-

Search strategy and selection criteria

We searched Pubmed with the following search terms: "Staphylococcus aureus", "colonisation", "carriage", "nose", "nasal", "vestibulum nasi", "mucosa", "nasal", "nosocomial", "epidemiology", "determinants", "risk factor", "treatment", and "infection". The following limits were used: English language, abstract, and human studies. We identified additional articles by searching the reference lists of existing articles.

related *S aureus* infections.³³ Intermittent nasal carriers of *S aureus* have the same risk of *S aureus* infection as noncarriers.³³ Targeting interventions to prevent continuous peritoneal dialysis-related infections is thus possible, thereby eliminating unnecessary prophylactic and therapeutic antibiotic use and resistance development.¹⁷³ The nasal strain and the infectious strain are clonally related in most patients on continuous peritoneal dialysis with *S aureus* infection.^{6,33,56}

Studies in the 1950s and 1960s show that with increasing numbers of staphylococcal bacteria in the nose, as in persistent carriers, *S aureus* skin carriage rates increase proportionally, in parallel with a rise in risk of *S aureus* surgical site infections.^{4,32,174,175} The more recent observation that patients carrying *S aureus* in their nose as well as perineal (or rectal) skin are at a higher risk for subsequent *S aureus* infections when compared with only perineal or nasal carriers can probably also be explained by a higher *S aureus* load.⁴⁹ Presumably people who carry *S aureus* in their nose contaminate their hands, then transferring the organism to other sites on their bodies.⁶⁶ The number of staphylococcal cells needed to cause infection decreases dramatically at the site of a suture, compared with healthy skin.¹⁷⁶

Although S aureus nasal carriage is unanimously accepted as one of the most important risk factors for nosocomial and surgical site infections today and studies using historical controls have reported substantial reductions of surgical site infections among patients receiving mupirocin, 136,177-179 randomised controlled trials uniformly failed to confirm these results.9,180,181 Perl and colleagues⁹ could only demonstrate a significant effect (48% risk reduction, p=0.02) on the rate of nosocomial S aureus infections after surgery among S aureus nasal carriers before surgery. The 37% reduction in S aureus surgical site infections was not statistically significant (p=0.15).9 Wertheim and colleagues180 and Kalmeijer and co-workers¹⁸¹ did not find a significant effect of eradication of S aureus nasal carriage in a general hospital and orthopaedic patient population, respectively. In the study of Perl and co-workers,9 53% of S aureus surgical site infections occurred in the non-carrier group, and 15% of the S aureus surgical infections in carriers was caused by a strain other than their resident strain. These infections probably result from exogenous transmissions from the hospital environment or undetected extra-nasal S aureus

carriage sites. Health-care workers can be important sources of transmission of *S aureus* and cross-infection.¹⁸²

Conclusions

Many studies have been published on *S aureus* nasal carriage—a Pubmed search with the terms *"Staphylococcus aureus"* and *"nasal"* gives 1383 hits. Based on these studies and the results of contradicting twin studies^{183,184} a simple Mendelian trait probably does not explain the different *S aureus* nasal carrier states.^{38,48} The repeated exposure to *S aureus* in the (household) environment is considered to be an important determinant of *S aureus* nasal carriage, probably more important than the genetic background of individuals. In general, a multifactorial genesis underlies *S aureus* nasal carriage.

We now need to identify which factors of S aureus and the nasal niche are of importance in adherence. Recent invitro and in-vivo studies in rats have begun to elucidate these factors, which is an important step forward.98-100 Furthermore, we may need to change the focus from mucosal adherence to adherence to more prevalent epitopes present in the anterior nares. The real importance of these factors needs to be confirmed in a human colonisation model. Only then may we find new, effective ways of decolonising the nares and other body sites. So far there is limited evidence that decolonisation of the anterior nares to prevent staphylococcal disease is only effective in dialysis and surgical patients. Recent clinical trials in non-surgical and orthopaedic patients did not show any positive effect.^{180,181} Focusing only on at-risk patients-eg, persistent carriers-may improve the outcome of an intervention. Also the decolonisation of extra-nasal sites needs to be improved.24

So far, there has been concern only for the increased risk of *S aureus* nasal carriers for acquiring *S aureus* infections. However, studies have shown that non-carriers who acquire exogenous *S aureus* bacteraemia have a fourfold increased mortality rate compared with *S aureus* nasal carriers.⁷ Thus, the immunological mechanisms of *S aureus* nasal carriage need to be resolved. In non-carriers, preventing the acquisition of *S aureus* strains deserves more attention.

Conflicts of interest

We declare that we have no conflicts of interest.

Acknowledgments

This work was made possible by grants from the Netherlands Organisation for Scientific Research, the Netherlands Organisation for Health Research and Development, Dutch Kidney Foundation, Dutch Ministry of Economic Affairs, and Trustfonds of the Erasmus University.

References

- Lowy F. Staphylococcus aureus infections. N Engl J Med 1998; 339: 520–32.
- 2 Wertheim HF, Vos MC, Boelens HA, et al. Low prevalence of methicillin-resistant *Staphylococcus aureus* (MRSA) at hospital admission in the Netherlands: the value of search and destroy and restrictive antibiotic use. *J Hosp Infect* 2004; 56: 321–25.
- 3 Centers for Disease Control and Prevention (CDC). Vancomycinresistant Staphylococcus aureus—New York, 2004. MMWR Morb Mortal Wkly Rep 2004; 53: 322–23.

- 4 Solberg CO. A study of carriers of *Staphylococcus aureus* with special regard to quantitative bacterial estimations. *Acta Med Scand Suppl* 1965; **436**: 1–96.
- 5 Williams REO. Healthy carriage of *Staphylococcus aureus*: its prevalence and importance. *Bacteriol Rev* 1963; **27**: 56–71.
- 6 Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 1997; 10: 505–20.
- 7 Wertheim HF, Vos MC, Ott A, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus noncarriers. Lancet 2004; 364: 703–05.
- 8 von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of *Staphylococcus aureus* bacteremia. N Engl J Med 2001; 344: 11–16.
- 9 Perl TM, Cullen JJ, Wenzel RP, et al. Intranasal mupirocin to prevent postoperative *Staphylococcus aureus* infections. N Engl J Med 2002; 346: 1871–77.
- 10 Valentine FC, Hall-Smith SP. Superficial staphylococcal infection. *Lancet* 1952; **2**: 351–54.
- 11 Kluytmans JA, Wertheim HF. Nasal carriage of *Staphylococcus aureus* and prevention of nosocomial infections. *Infection* 2005; **33**: 3–8.
- 12 Ogston A. Report upon micro-organisms in surgical diseases. BMJ 1881; 1: 369–75.
- 13 Fisk RT, Mordvin OE. Studies on staphylococci. III Further observations on bacteriophage typing of *Staphylococcus aureus*. *Am J Hyg* 1944; 40: 232–38.
- 14 Barber M. Staphylococcal infection due to penicillin-resistant strains. *Br Med J* 1947; 2: 863–72.
- 15 Atkins JB, Marks J. The role of staphylococcal infection in beat disorders of miners. *Br J Ind Med* 1952; **9**: 296–302.
- Jevons MP. "Celbenin"-resistant staphylococi. Br Med J 1961; 2: 124–33.
- 17 Prevost G, Pottecher B, Dahlet M, Bientz M, Mantz JM, Piemont Y. Pulsed field gel electrophoresis as a new epidemiological tool for monitoring methicillin-resistant *Staphylococcus aureus* in an intensive care unit. J Hosp Infect 1991; 17: 255–69.
- 18 Patti JM, Allen BL, McGavin MJ, Hook M. MSCRAMM-mediated adherence of microorganisms to host tissues. *Annu Rev Microbiol* 1994; 48: 585–617.
- 19 Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of *Staphylococcus aureus*. J Clin Microbiol 2000; 38: 1008–15.
- 20 Kuroda M, Ohta T, Uchiyama I, et al. Whole genome sequencing of meticillin-resistant *Staphylococcus aureus*. *Lancet* 2001; 357: 1225–40.
- 21 Chambers HF. The changing epidemiology of *Staphylococcus aureus*? Emerg Infect Dis 2001; 7: 178–82.
- 22 Chang S, Sievert DM, Hageman JC, et al. Infection with vancomycinresistant *Staphylococcus aureus* containing the vanA resistance gene. *N Engl J Med* 2003; 348: 1342–47.
- 23 Armstrong-Esther CA, Smith JE. Carriage patterns of *Staphylococcus aureus* in a healthy non-hospital population of adults and children. *Ann Hum Biol* 1976; **3**: 221–27.
- 24 Wertheim HF, Verveer J, Boelens HA, van Belkum A, Verbrugh HA, Vos MC. Effect of mupirocin treatment on nasal, pharyngeal, and perineal carriage of *Staphylococcus aureus* in healthy adults. *Antimicrob Agents Chemother* 2005; **49**: 1465–67.
- 25 Ridley M. Perineal carriage of Staph. aureus. Br Med J 1959; 34: 270–73.
- 26 Rimland D, Roberson B. Gastrointestinal carriage of methicillinresistant Staphylococcus aureus. J Clin Microbiol 1986; 24: 137–38.
- 27 Guinan ME, Dan BB, Guidotti RJ, et al. Vaginal colonization with Staphylococcus aureus in healthy women: a review of four studies. Ann Intern Med 1982; 96: 944–47.
- 28 Dancer SJ, Noble WC. Nasal, axillary, and perineal carriage of Staphylococcus aureus among women: identification of strains producing epidermolytic toxin. J Clin Pathol 1991; 44: 681–84.
- 29 Eriksen NH, Espersen F, Rosdahl VT, Jensen K. Carriage of Staphylococcus aureus among 104 healthy persons during a 19-month period. Epidemiol Infect 1995; 115: 51–60.
- 30 VandenBergh MF, Yzerman EP, van Belkum A, Boelens HA, Sijmons M, Verbrugh HA. Follow-up of Staphylococcus aureus nasal

carriage after 8 years: redefining the persistent carrier state. *J Clin Microbiol* 1999; **37**: 3133–40.

- 31 Maxwell JG, Ford CR, Peterson DE, Mitchell CR. Long-term study of nasal staphylococci among hospital personnel. Am J Surg 1969; 118: 849–54.
- 32 White A. Increased infection rates in heavy nasal carriers of coagulase-positive staphylococci. Antimicrobial Agents Chemother 1963; 161: 667–70.
- 33 Nouwen JL, Fieren MW, Snijders S, Verbrugh HA, van Belkum A. Persistent (not intermittent) nasal carriage of *Staphylococcus aureus* is the determinant of CPD-related infections. *Kidney Int* 2005; 67: 1084–92.
- 34 Nouwen JL, Ott A, Kluytmans-Vandenbergh MF, et al. Predicting the Staphylococcus aureus nasal carrier state: derivation and validation of a "culture rule". Clin Infect Dis 2004; 39: 806–11.
- 35 Hu L, Umeda A, Kondo S, Amako K. Typing of Staphylococcus aureus colonising human nasal carriers by pulsed-field gel electrophoresis. *J Med Microbiol* 1995; 42: 127–32.
- 36 Cunliffe AC. Incidence of *Staph. aureus* in the anterior nares of healthy children. *Lancet* 1949; 2: 411–14.
- 77 Noble WC, Valkenburg HA, Wolters CH. Carriage of *Staphylococcus aureus* in random samples of a normal population. *J Hyg (Lond)* 1967; 65: 567–73.
- 38 Peacock SJ, Justice A, Griffiths D, et al. Determinants of acquisition and carriage of *Staphylococcus aureus* in infancy. *J Clin Microbiol* 2003; 41: 5718–25.
- 39 Shopsin B, Mathema B, Martinez J, et al. Prevalence of methicillinresistant and methicillin-susceptible *Staphylococcus aureus* in the community. J Infect Dis 2000; 182: 359–62.
- 40 Cole AM, Tahk S, Oren A, et al. Determinants of Staphylococcus aureus nasal carriage. Clin Diagn Lab Immunol 2001; 8: 1064–69.
- 41 Yazgi H, Ertek M, Ozbek A, Kadanali A. Nasal carriage of *Staphylococcus aureus* in hospital personnel and the normal population and antibiotic resistance of the isolates. *Mikrobiyol Bul* 2003; **37**: 137–42 (in Turkish).
- 2 Kenner J, O'Connor T, Piantanida N, et al. Rates of carriage of methicillin-resistant and methicillin-susceptible *Staphylococcus aureus* in an outpatient population. *Infect Control Hosp Epidemiol* 2003; 24: 439–44.
- 43 Bischoff WE, Wallis ML, Tucker KB, Reboussin BA, Sherertz RJ. Staphylococcus aureus nasal carriage in a student community: prevalence, clonal relationships, and risk factors. Infect Control Hosp Epidemiol 2004; 25: 485–91.
- 44 Anwar MS, Jaffery G, Rehman Bhatti KU, Tayyib M, Bokhari SR. Staphylococcus aureus and MRSA nasal carriage in general population. J Coll Physicians Surg Pak 2004; 14: 661–64.
- 45 Leman R, Alvarado-Ramy F, Pocock S, et al. Nasal carriage of methicillin-resistant *Staphylococcus aureus* in an American Indian population. *Infect Control Hosp Epidemiol* 2004; 25: 121–25.
- 46 Nulens E, Gould I, Mackenzie F, et al. Staphylococcus aureus carriage among participants at the 13th European Congress of Clinical Microbiology and Infectious Diseases. Eur J Clin Microbiol Infect Dis 2005; 24: 145–48.
- 47 Bagger JP, Zindrou D, Taylor KM. Postoperative infection with meticillin-resistant *Staphylococcus aureus* and socioeconomic background. *Lancet* 2004; 363: 706–08.
- 48 Bogaert D, van Belkum A, Sluijter M, et al. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet 2004; 363: 1871–72.
- 49 Squier C, Rihs JD, Risa KJ, et al. *Staphylococcus aureus* rectal carriage and its association with infections in patients in a surgical intensive care unit and a liver transplant unit. *Infect Control Hosp Epidemiol* 2002; 23: 495–501.
- 50 Nouwen J, Boelens H, van Belkum A, Verbrugh H. Human factor in Staphylococcus aureus nasal carriage. Infect Immun 2004; 72: 6685–88.
- 51 Herwaldt LA, Cullen JJ, French P, et al. Preoperative risk factors for nasal carriage of *Staphylococcus aureus*. *Infect Control Hosp Epidemiol* 2004; 25: 481–84.
- 52 Parnaby RM, O'Dwyer G, Monsey HA, Shafi MS. Carriage of Staphylococcus aureus in the elderly. J Hosp Infect 1996; 33: 201–06.
- 53 Lipsky BA, Pecoraro RE, Chen MS, Koepsell TD. Factors affecting staphylococcal colonization among NIDDM outpatients. *Diabetes Care* 1987; 10: 483–86.

- 54 Yu VL, Goetz A, Wagener M, et al. *Staphylococcus aureus* nasal carriage and infection in patients on hemodialysis. Efficacy of antibiotic prophylaxis. N Engl J Med 1986; 315: 91–96.
- 55 Kirmani N, Tuazon CU, Murray HW, Parrish AE, Sheagren JN. Staphylococcus aureus carriage rate of patients receiving long-term hemodialysis. Arch Intern Med 1978; 138: 1657–59.
- 56 Luzar MA, Coles GA, Faller B, et al. *Staphylococcus aureus* nasal carriage and infection in patients on continuous ambulatory peritoneal dialysis. *N Engl J Med* 1990; **322**: 505–09.
- 57 Chapoutot C, Pageaux GP, Perrigault PF, et al. *Staphylococcus aureus* nasal carriage in 104 cirrhotic and control patients. A prospective study. *J Hepatol* 1999; **30**: 249–53.
- 58 Chang FY, Singh N, Gayowski T, Drenning SD, Wagener MM, Marino IR. *Staphylococcus aureus* nasal colonization and association with infections in liver transplant recipients. *Transplantation* 1998; 65: 1169–72.
- 59 Nguyen MH, Kauffman CA, Goodman RP, et al. Nasal carriage of and infection with *Staphylococcus aureus* in HIV- infected patients. *Ann Intern Med* 1999; 130: 221–25.
- 60 Sissolak D, Geusau A, Heinze G, Witte W, Rotter ML. Risk factors for nasal carriage of *Staphylococcus aureus* in infectious disease patients, including patients infected with HIV, and molecular typing of colonizing strains. *Eur J Clin Microbiol Infect Dis* 2002; 21: 88–96.
- 61 Williams JV, Vowels BR, Honig PJ, Leyden JJ. S. aureus isolation from the lesions, the hands, and the anterior nares of patients with atopic dermatitis. *Pediatr Dermatol* 1998;15: 194–98.
- 62 Steele RW. Recurrent staphylococcal infection in families. *Arch Dermatol* 1980; **116**: 189–90.
- 63 Hoeger PH, Lenz W, Boutonnier A, Fournier JM. Staphylococcal skin colonization in children with atopic dermatitis: prevalence, persistence, and transmission of toxigenic and nontoxigenic strains. J Infect Dis 1992; 165: 1064–68.
- 64 Boyko EJ, Lipsky BA, Sandoval R, et al. NIDDM and prevalence of nasal *Staphylococcus aureus* colonization. *Diabetes Care* 1989; 12: 189–92.
- 65 Crossley KB, Archer GL. The staphylococcii in human disease, 1st edn. New York: Churchill Livingstone Inc, 1997.
- 66 Wertheim HFL, Kleef M, Vos MC, Ott A, Verbrugh H, Fokkens W. Nosepicking and nasal carriage of Staphylococcus aureus. Infect Control Hosp Epidemiol (in press).
- 67 Gluck U, Gebbers JO. The nose as bacterial reservoir: important differences between the vestibule and cavity. *Laryngoscope* 2000; 110: 426–28.
- 68 Solberg CO. Spread of Staphylococcus aureus in hospitals: causes and prevention. Scand J Infect Dis 2000; 32: 587–95.
- 69 Sherertz RJ, Bassetti S, Bassetti-Wyss B. "Cloud" health-care workers. Emerg Infect Dis 2001; 7: 241–44.
- 70 Goslings WR, Buchli K. Nasal carrier rate of antibiotic-resistant staphylococci; influence of hospitalization on carrier rate in patients, and their household contacts. AMA Arch Intern Med 1958; 102: 691–715.
- 71 Nouwen JL. Determinants, risks and dynamics of *Staphylococcus aureus* nasal carriage (PhD thesis). Rotterdam: Erasmus MC, 2004.
- 72 Wagenvoort JH, De Brauwer EI, Sijstermans ML, Toenbreker HM. Risk of re-introduction of methicillin-resistant *Staphylococcus aureus* into the hospital by intrafamilial spread from and to healthcare workers. J Hosp Infect 2005; 59: 67–68.
- 73 Herwaldt LA, Boyken LD, Coffman S, Hochstetler L, Flanigan MJ. Sources of *Staphylococcus aureus* for patients on continuous ambulatory peritoneal dialysis. *Perit Dial Int* 2003; 23: 237–41.
- 74 Decker MD, Lybarger JA, Vaughn WK, Hutcheson RH Jr, Schaffner W. An outbreak of staphylococcal skin infections among river rafting guides. Am J Epidemiol 1986; 124: 969–76.
- 75 Kazakova SV, Hageman JC, Matava M, et al. A clone of methicillinresistant *Staphylococcus aureus* among professional football players. *N Engl J Med* 2005; **352**: 468–75.
- 76 Armand-Lefevre L. Clonal comparison of *Staphylococcus aureus* isolates from healthy pig farmers, human controls, and pigs. *Emerg Infect Dis* 2005; 11: 711–14.
- 77 Bassetti S, Wolfisberg L, Jaussi B, et al. Carriage of among injection drug users: lower prevalence in an injection heroin maintenance program than in an oral methadone program. *Infect Control Hosp Epidemiol* 2004; 25: 133–37.

- 78 Miles AA, Williams REO, Clayton-Cooper B. The carriage of Staphylococcus (pyogenes) aureus in man and its relation to wound infection. J Pathol Bacteriol 1944; 56: 513–24.
- 79 Noble WC, Williams RE, Jevons MP, Shooter RA. Some aspects of nasal carriage of staphylococci. J Clin Pathol 1964; 17: 79–83.
- 80 Kaliner MA. Human nasal respiratory secretions and host defense. Am Rev Respir Dis 1991; 144: S52–56.
- 81 Cole AM, Dewan P, Ganz T. Innate antimicrobial activity of nasal secretions. *Infect Immun* 1999; 67: 3267–75.
- 82 von Aulock S, Morath S, Hareng L, et al. Lipoteichoic acid from Staphylococcus aureus is a potent stimulus for neutrophil recruitment. Immunobiology 2003; 208: 413–22.
- 83 Pickkers P, Hoedemaekers A, Netea MG, et al. Hypothesis: normalisation of cytokine dysbalance explains the favourable effects of strict glucose regulation in the critically ill. *Neth J Med* 2004; 62: 143–50.
- 84 Nagaoka I, Hirota S, Yomogida S, Ohwada A, Hirata M. Synergistic actions of antibacterial neutrophil defensins and cathelicidins. *Inflamm Res* 2000; 49: 73–79.
- 85 Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002; 347: 1151–60.
- 86 Peschel A. How do bacteria resist human antimicrobial peptides? Trends Microbiol 2002; 10: 179–86.
- 87 Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 2004; 172: 1169–76.
- 88 Peschel A, Jack RW, Otto M, et al. *Staphylococcus aureus* resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. *J Exp Med* 2001; **193**: 1067–76.
- 89 Kristian SA, Durr M, Van Strijp JA, Neumeister B, Peschel A. MprFmediated lysinylation of phospholipids in *Staphylococcus aureus* leads to protection against oxygen-independent neutrophil killing. *Infect Immun* 2003; 71: 546–49.
- 90 Bera A, Herbert S, Jakob A, Vollmer W, Gotz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of *Staphylococcus aureus*. *Mol Microbiol* 2005; 55: 778–87.
- 91 Ritz HL, Kirkland JJ, Bond GG, Warner EK, Petty GP. Association of high levels of serum antibody to staphylococcal toxic shock antigen with nasal carriage of toxic shock antigenproducing strains of *Staphylococcus aureus*. *Infect Immun* 1984; 43: 954–58.
- 92 Krstic RV. Human microscopic anatomy. An atlas for students of medicine and biology. Heidelberg: Springer Verlag, 1991.
- 93 Shuter J, Hatcher VB, Lowy FD. Staphylococcus aureus binding to human nasal mucin. Infect Immun 1996; 64: 310–18.
- 94 Aly R, Shinefield HI, Strauss WG, Maibach HI. Bacterial adherence to nasal mucosal cells. *Infect Immun* 1977; 17: 546–49.
- 95 Aly R, Shinefield HR, Litz C, Maibach HI. Role of teichoic acid in the binding of *Staphylococcus aureus* to nasal epithelial cells. *J Infect Dis* 1980; 141: 463–65.
- 96 Bibel DJ, Aly R, Shinefield HR, Maibach HI, Strauss WG. Importance of the keratinized epithelial cell in bacterial adherence. *J Invest Dermatol* 1982; **79**: 250–53.
- 97 Hare R, Ridley M. Further studies on the transmission of *Staph. aureus. Br Med J* 1958; **29:** 69–73.
- 98 O'Brien LM, Walsh EJ, Massey RC, Peacock SJ, Foster TJ. Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. *Cell Microbiol* 2002; 4: 759–70.
- 99 Roche FM, Meehan M, Foster TJ. The *Staphylococcus aureus* surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. *Microbiology* 2003; 149: 2759–67.
- 100 Weidenmaier C, Kokai-Kun JF, Kristian SA, et al. Role of teichoic acids in *Staphylococcus aureus* nasal colonization, a major risk factor in nosocomial infections. *Nat Med* 2004; **10**: 243–45.
- 101 Bibel DJ, Aly R, Bayles C, Strauss WG, Shinefield HR, Maibach HI. Competitive adherence as a mechanism of bacterial interference. *Can J Microbiol* 1983; 29: 700–03.

- 102 Shinefield HR, Wilsey JD, Ribble JC, Boris M, Eichenwald HF, Dittmar CI. Interactions of staphylococcal colonization. Influence of normal nasal flora and antimicrobials on inoculated *Staphylococcus aureus* strain 502A. *Am J Dis Child* 1966; 111: 11–21.
- 103 Lina G, Boutite F, Tristan A, Bes M, Etienne J, Vandenesch F. Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. *Appl Environ Microbiol* 2003; 69: 18–23.
- 104 van Leeuwen W, van Nieuwenhuizen W, Gijzen C, Verbrugh H, van Belkum A. Population studies of methicillin-resistant and sensitive *Staphylococcus aureus* strains reveal a lack of variability in the agrD gene, encoding a staphylococcal autoinducer peptide. *J Bacteriol* 2000; **182**: 5721–29.
- 105 Strauss WG, Maibach HI, Shinefield HR. Bacterial interference treatment of recurrent furunculosis. 2. Demonstration of the relationship of strain to pathogenicity. JAMA 1969; 208: 861–63.
- 106 Houck PW, Nelson JD, Kay JL. Fatal septicemia due to Staphylococcus aureus 502A. Report of a case and review of the infectious complications of bacterial interference programs. Am J Dis Child 1972; 123: 45–48.
- 107 Musser JM, Kapur V. Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. J Clin Microbiol 1992; 30: 2058–63.
- 108 Grundmann H, Hori S, Enright MC, et al. Determining the genetic structure of the natural population of *Staphylococcus aureus*: a comparison of multilocus sequence typing with pulsed-field gel electrophoresis, randomly amplified polymorphic DNA analysis, and phage typing. *J Clin Microbiol* 2002; **40**: 4544–46.
- 109 Feil EJ, Cooper JE, Grundmann H, et al. How clonal is *Staphylococcus aureus*? J Bacteriol 2003; **185**: 3307–16.
- 110 Melles DC, Gorkink RF, Boelens HA, et al. Natural population dynamics and expansion of pathogenic clones of *Staphylococcus* aureus. J Clin Invest 2004; **114**: 1732–40.
- 111 Feil EJ, Smith JM, Enright MC, Spratt BG. Estimating recombinational parameters in *Streptococcus pneumoniae* from multilocus sequence typing data. *Genetics* 2000; **154**: 1439–50.
- 112 Robinson DA, Enright MC. Multilocus sequence typing and the evolution of methicillin-resistant *Staphylococcus aureus*. *Clin Microbiol Infect* 2004; **10**: 92–97.
- 113 Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. *J Bacteriol* 2004; **186**: 1518–30.
- 114 Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci USA 2002; 99: 7687–92.
- 115 Fitzgerald JR, Sturdevant DE, Mackie SM, Gill SR, Musser JM. Evolutionary genomics of *Staphylococcus aureus*: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. *Proc Natl Acad Sci USA* 2001; **98**: 8821–26.
- 116 Robinson DA, Kearns AM, Holmes A, et al. Re-emergence of early pandemic *Staphylococcus aureus* as a community-acquired meticillinresistant clone. *Lancet* 2005; 365: 1256–58.
- 117 Pan ES, Diep BA, Charlebois ED, et al. Population dynamics of nasal strains of methicillin-resistant *Staphylococcus aureus*—and their relation to community-associated disease activity. *J Infect Dis* 2005; 192: 811–18.
- 118 Foster TJ. The Staphylococcus aureus "superbug". J Clin Invest 2004; 114: 1693–96.
- 119 Wertheim HF, Leeuwen WB, Snijders S, et al. Associations between *Staphylococcus aureus* genotype, infection, and in-hospital mortality: a nested case-control study. *J Infect Dis* 2005; **192**: 1196–200.
- 120 Peacock SJ, Moore CE, Justice A, et al. Virulent combinations of adhesin and toxin genes in natural populations of *Staphylococcus aureus*. *Infect Immun* 2002; **70**: 4987–96.
- 121 Smith KJ, Wagner KF, Yeager J, Skelton HG, Ledsky R. Staphylococcus aureus carriage and HIV-1 disease: association with increased mucocutaneous infections as well as deep soft-tissue infections and sepsis. Arch Dermatol 1994; 130: 521–22.

- 122 Tulloch LG. Nasal carriage in staphylococcal skin infections. Br Med J 1954; 4893: 912–13.
- 123 Toshkova K, Annemuller C, Akineden O, Lammler C. The significance of nasal carriage of *Staphylococcus aureus* as risk factor for human skin infections. *FEMS Microbiol Lett* 2001; **202**: 17–24.
- 124 Barrow GI. Clinical and bacteriological aspects of impetigo contagiosa. J Hyg (Lond) 1955; 53: 495–508.
- 125 Hobbs BC, Carruthers HC, Gough J. Sycosis barbae. Lancet 1947; 2: 572–74.
- 126 Copeman PW. Treatment of recurrent styes. Lancet 1958; 2: 728–29.
- 127 Laupland KB, Gregson DB, Zygun DA, Doig CJ, Mortis G, Church DL. Severe bloodstream infections: a population-based assessment. *Crit Care Med* 2004; **32**: 992–97.
- 128 Espersen F. Identifying the patient risk for *Staphylococcus aureus* bloodstream infections. *J Chemother* 1995;7 (suppl 3): 11–17.
- 129 Roder BL, Wandall DA, Frimodt-Moller N, Espersen F, Skinhoj P, Rosdahl VT. Clinical features of *Staphylococcus aureus* endocarditis: a 10-year experience in Denmark. *Arch Intern Med* 1999; 159: 462–69.
- 130 Fridkin SK, Hageman JC, Morrison M, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 2005; 352: 1436–44.
- 131 Vandenesch F, Naimi T, Enright MC, et al. Community-acquired methicillin-resistant *Staphylococcus aureus* carrying Panton-Valentine leukocidin genes: worldwide emergence. *Emerg Infect Dis* 2003; 9: 978–84.
- 132 Salgado CD, Farr BM, Calfee DP. Community-acquired methicillinresistant *Staphylococcus aureus*: a meta-analysis of prevalence and risk factors. *Clin Infect Dis* 2003; 36: 131–39.
- 133 Faria NA, Oliveira DC, Westh H, et al. Epidemiology of emerging methicillin-resistant *Staphylococcus aureus* (MRSA) in Denmark: a nationwide study in a country with low prevalence of MRSA infection. *J Clin Microbiol* 2005; 43: 1836–42.
- 134 Ellis MW, Hospenthal DR, Dooley DP, Gray PJ, Murray CK. Natural history of community-acquired methicillin-resistant *Staphylococcus aureus* colonization and infection in soldiers. *Clin Infect Dis* 2004; 39: 971–79.
- 135 Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. *Clin Infect Dis* 2004; **39**: 309–17.
- 36 VandenBergh MF, Kluytmans JA, van Hout BA, et al. Costeffectiveness of perioperative mupirocin nasal ointment in cardiothoracic surgery. *Infect Control Hosp Epidemiol* 1996; 17: 786–92.
- 137 Pittet D, Wenzel RP. Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. *Arch Intern Med* 1995; 155: 1177–84.
- 138 Abramson MA, Sexton DJ. Nosocomial methicillin-resistant and methicillin-susceptible *Staphylococcus aureus* primary bacteremia: at what costs? *Infect Control Hosp Epidemiol* 1999; 20: 408–11.
- 139 Kirkland KB, Briggs JP, Trivette SL, Wilkinson WE, Sexton DJ. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. *Infect Control Hosp Epidemiol* 1999; **20**: 725–30.
- 140 Cespedes C, Said-Salim B, Miller M, et al. The clonality of Staphylococcus aureus nasal carriage. J Infect Dis 2005; 191: 444–52.
- 141 Davis KA, Stewart JJ, Crouch HK, Florez CE, Hospenthal DR. Methicillin-resistant *Staphylococcus aureus* (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. *Clin Infect Dis* 2004; **39**: 776–82.
- 142 Kalmeijer MD, van Nieuwland-Bollen E, Bogaers-Hofman D, de Baere GA. Nasal carriage of *Staphylococcus aureus* is a major risk factor for surgical-site infections in orthopedic surgery. *Infect Control Hosp Epidemiol* 2000; 21: 319–23.
- 143 Kluytmans JA, Mouton JW, Ijzerman EP, et al. Nasal carriage of Staphylococcus aureus as a major risk factor for wound infections after cardiac surgery. J Infect Dis 1995; 171: 216–19.
- 144 Ruef C, Fanconi S, Nadal D. Sternal wound infection after heart operations in pediatric patients associated with nasal carriage of *Staphylococcus aureus. J Thorac Cardiovasc Surg* 1996; 112: 681–86.

- 145 Kaplowitz LG, Comstock JA, Landwehr DM, Dalton HP, Mayhall CG. Prospective study of microbial colonization of the nose and skin and infection of the vascular access site in hemodialysis patients. J Clin Microbiol 1988; 26: 1257–62.
- 146 Rebel MH, Van Furth R, Stevens P, Bosscher-Zonderman L, Noble WC. The flora of renal haemodialysis shunt sites. J Clin Pathol 1975; 28: 29–32.
- 147 Chang FY, Singh N, Gayowski T, Wagener MM, Marino IR. Staphylococcus aureus nasal colonization in patients with cirrhosis: prospective assessment of association with infection. Infect Control Hosp Epidemiol 1998; 19: 328–32.
- 148 Desai D, Desai N, Nightingale P, Elliott T, Neuberger J. Carriage of methicillin-resistant *Staphylococcus aureus* is associated with an increased risk of infection after liver transplantation. *Liver Transpl* 2003; 9: 754–59.
- 149 Bert F, Galdbart JO, Zarrouk V, et al. Association between nasal carriage of *Staphylococcus aureus* and infection in liver transplant recipients. *Clin Infect Dis* 2000; **31**: 1295–99.
- 150 Pujol M, Pena C, Pallares R, et al. Nosocomial *Staphylococcus aureus* bacteremia among nasal carriers of methicillin-resistant and methicillin-susceptible strains. *Am J Med* 1996; **100**: 509–16.
- 151 Corbella X, Dominguez MA, Pujol M, et al. *Staphylococcus aureus* nasal carriage as a marker for subsequent staphylococcal infections in intensive care unit patients. *Eur J Clin Microbiol Infect Dis* 1997; 16: 351–57.
- 152 Garrouste-Orgeas M, Timsit JF, Kallel H, et al. Colonization with methicillin-resistant *Staphylococcus aureus* in ICU patients: morbidity, mortality, and glycopeptide use. *Infect Control Hosp Epidemiol* 2001; 22: 687–92.
- 153 Jensen AG, Wachmann CH, Poulsen KB, et al. Risk factors for hospital-acquired *Staphylococcus aureus* bacteremia. *Arch Intern Med* 1999; 159: 1437–44.
- 154 Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in combined medical-surgical intensive care units in the United States. *Infect Control Hosp Epidemiol* 2000; 21: 510–15.
- 155 Nielsen J, Ladefoged SD, Kolmos HJ. Dialysis catheter-related septicaemia—focus on *Staphylococcus aureus* septicaemia. *Nephrol Dial Transplant* 1998; 13: 2847–52.
- 156 Goldblum SE, Ulrich JA, Goldman RS, Reed WP. Nasal and cutaneous flora among hemodialysis patients and personnel: quantitative and qualitative characterization and patterns of Staphylococcal carriage. Am J Kidney Dis 1982; 2: 281–86.
- 157 Boelaert JR, De Baere YA, Geernaert MA, Godard CA, Van Landuyt HW. The use of nasal mupirocin ointment to prevent *Staphylococcus aureus* bacteraemias in haemodialysis patients: an analysis of cost-effectiveness. J Hosp Infect 1991; **19** (suppl B): 41–46.
- 158 Boelaert JR, Van Landuyt HW, Godard CA, et al. Nasal mupirocin ointment decreases the incidence of *Staphylococcus aureus* bacteraemias in haemodialysis patients. *Nephrol Dial Transplant* 1993; 8: 235–39.
- 159 Bloom BS, Fendrick AM, Chernew ME, Patel P. Clinical and economic effects of mupirocin calcium on preventing *Staphylococcus aureus* infection in hemodialysis patients: a decision analysis. *Am J Kidney Dis* 1996; 27: 687–94.
- 160 Kluytmans JA, Manders MJ, van Bommel E, Verbrugh H. Elimination of nasal carriage of *Staphylococcus aureus* in hemodialysis patients. *Infect Control Hosp Epidemiol* 1996; **17**: 793–97.
- 161 Johnson DW, MacGinley R, Kay TD, et al. A randomized controlled trial of topical exit site mupirocin application in patients with tunnelled, cuffed haemodialysis catheters. *Nephrol Dial Transplant* 2002; 17: 1802–07.
- 162 Davies SJ, Ogg CS, Cameron JS, Poston S, Noble WC. Staphylococcus aureus nasal carriage, exit-site infection and catheter loss in patients treated with continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int 1989; 9: 61–64.
- 163 Sesso R, Draibe S, Castelo A, et al. Staphylococcus aureus skin carriage and development of peritonitis in patients on continuous ambulatory peritoneal dialysis. Clin Nephrol 1989; 31: 264–68.
- 164 Lye WC, Leong SO, van der Straaten J, Lee EJ. Staphylococcus aureus CAPD-related infections are associated with nasal carriage. Adv Perit Dial 1994; 10: 163–65.

- 165 Wanten GJ, van Oost P, Schneeberger PM, Koolen MI. Nasal carriage and peritonitis by *Staphylococcus aureus* in patients on continuous ambulatory peritoneal dialysis: a prospective study. *Perit Dial Int* 1996; 16: 352–56.
- 166 Zimakoff J, Bangsgaard Pedersen F, Bergen L, et al. Staphylococcus aureus carriage and infections among patients in four haemo- and peritoneal-dialysis centres in Denmark. J Hosp Infect 1996; 33: 289–300.
- 167 Perez-Fontan M, Rosales M, Rodriguez-Carmona A, et al. Treatment of *Staphylococcus aureus* nasal carriers in CAPD with mupirocin. *Adv Perit Dial* 1992; 8: 242–45.
- 168 Thodis E, Bhaskaran S, Pasadakis P, Bargman JM, Vas SI, Oreopoulos DG. Decrease in *Staphylococcus aureus* exit-site infections and peritonitis in CAPD patients by local application of mupirocin ointment at the catheter exit site. *Perit Dial Int* 1998; 18: 261–70.
- 169 Mylotte JM, Kahler L, Jackson E. "Pulse" nasal mupirocin maintenance regimen in patients undergoing continuous ambulatory peritoneal dialysis. *Infect Control Hosp Epidemiol* 1999; 20: 741–45.
- 170 Thodis E, Passadakis P, Panagoutsos S, Bacharaki D, Euthimiadou A, Vargemezis V. The effectiveness of mupirocin preventing *Staphylococcus aureus* in catheter-related infections in peritoneal dialysis. *Adv Perit Dial* 2000; **16**: 257–61.
- 171 Hanslik TM, Newman L, Tessman M, Morrissey AB, Friedlander MA. Lack of correlation between nasal cultures positive for *Staphylococcus aureus* and the development of *S. aureus* exit-site infections: results unaffected by routine mupirocin treatment of nasal *S. aureus* carriage. *Adv Perit Dial* 1994; **10**: 158–62.
- 172 Araki Y, Hataya H, Ikeda M, Ishikura K, Honda M. Intranasal mupirocin does not prevent exit-site infections in children receiving peritoneal dialysis. *Perit Dial Int* 2003; 23: 267–69.
- 173 Conly JM, Vas S. Increasing mupirocin resistance of *Staphylococcus aureus* in CAPD—should it continue to be used as prophylaxis? *Perit Dial Int* 2002; 22: 649–52.
- 174 White A, Smith J. Nasal reservoir as the source of extranasal staphylococci. Antimicrobial Agents Chemother 1963; 161: 679–83.
- 175 Henderson RJ, Williams RE. Nasal disinfection in prevention of postoperative staphylococcal infection of wounds. *Br Med J* 1961; 5248: 330–33.
- 176 Elek SD, Conen PE. The virulence of *Staphylococcus pyogenes* for man; a study of the problems of wound infection. *Br J Exp Pathol* 1957; 38: 573–86.
- 177 Kluytmans JA, Mouton JW, VandenBergh MF, et al. Reduction of surgical-site infections in cardiothoracic surgery by elimination of nasal carriage of *Staphylococcus aureus*. *Infect Control Hosp Epidemiol* 1996; 17: 780–85.
- 178 Cimochowski GE, Harostock MD, Brown R, Bernardi M, Alonzo N, Coyle K. Intranasal mupirocin reduces sternal wound infection after open heart surgery in diabetics and nondiabetics. *Ann Thorac Surg* 2001; **71**: 1572–78.
- 179 Gernaat-van der Sluis AJ, Hoogenboom-Verdegaal AM, Edixhoven PJ, Spies-van Rooijen NH. Prophylactic mupirocin could reduce orthopedic wound infections. 1,044 patients treated with mupirocin compared with 1,260 historical controls. Acta Orthop Scand 1998; 69: 412–14.
- 180 Wertheim HF, Vos MC, Ott A, et al. Mupirocin prophylaxis against nosocomial *Staphylococcus aureus* infections in nonsurgical patients: a randomized study. *Ann Intern Med* 2004; 140: 419–25.
- 181 Kalmeijer MD, Coertjens H, Van Nieuwland-Bollen PM, et al. Surgical site infections in orthopedic surgery: the effect of mupirocin nasal ointment in a double-blind, randomized, placebo-controlled study. *Clin Infect Dis* 2002; **35**: 353–58.
- 182 Blok HE, Troelstra A, Kamp-Hopmans TE, et al. Role of healthcare workers in outbreaks of methicillin-resistant *Staphylococcus aureus*: a 10-year evaluation from a Dutch university hospital. *Infect Control Hosp Epidemiol* 2003; 24: 679–85.
- 183 Hoeksma A, Winkler KC. The normal flora of the nose in twins. Acta Leiden 1963; 32: 123–33.
- 184 Aly R, Maibach HI, Shinefield HR, Mandel AD. Staphylococcus aureus carriage in twins. Am J Dis Child 1974; 127: 486–88.